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Abstract: The scale dependence of the matrix diffusion coefficient (Dm) for fractured 

media has been observed from variable-scale column experiments to field tracer tests. In 

this paper, we derive the effective Dm for multimodal heterogeneous fractured rocks using 

characteristic distributions of matrix properties and volume averaging of the mass 

transfer coefficient.  The effective field-scale Dm is dependent on the statistics (geometric 

mean, variance, and integral scale) of laboratory-scale ln(Dm) and on the domain size. 

The effective Dm increases with the integral scales and is larger than the geometric mean 

of ln(Dm). Monte Carlo simulations with 1000 realizations of heterogeneous Dm fields 

were conducted to assess the accuracy of the derived effective Dm.  

Introduction 

In saturated fractured-rock systems, where the primary pathway for groundwater 

flow and solute transport is through fractures, groundwater in the matrix is considered 

immobile in dual-porosity conceptual models (Tang et al., 1981; Sudicky and Frind, 

1982). Thus, although the bulk of the water travels through the fractures, a very large 

reservoir of water in the matrix can act to store and reduce mobility of contaminants via 

matrix diffusion (Robinson, 1994). Mass transfer between fractures and matrix depends 

on Dm, fracture aperture, and matrix porosity. Therefore, Dm is one of the parameters that 

governs contaminant transport in fractured rock systems.  

 1

mailto:daiz@lanl.gov


Over the years, the ability to fully characterize the parameters in the fracture-

matrix mass transfer process has not kept pace with numerical and modeling expertise 

(Liu et al., 2007). Transport experiments are usually conducted at the sub-meter or 

column scale under conditions in which flow rates, tracer injections and other conditions 

are well controlled. Assuming relatively little heterogeneity in such experiments, 

analytical or semi-analytical models have been used to estimate fracture transport 

parameters (Reimus et al., 2003). However, there remains no practical unifying theory to 

integrate laboratory-scale parameters in field-scale predictions for risk assessment or 

remedial design.  

Recent studies indicate that Dm estimated from the column transport experiments 

may not be suitable for modeling field-scale solute transport in fractured rocks. Becker 

and Shapiro (2000) and Shapiro (2001) reported that effective Dm in kilometer-scale 

systems is much greater than the estimate from laboratory experiments. Neretnieks 

(2002) and Andersson et al. (2004) estimated the effective Dm from field tracer test data 

at the Äspö site and obtained some values about 30 times greater than their laboratory-

scale estimates. Lui et al. (2004) reported that the effective Dm at the field scale is 

generally greater than that at laboratory scales and tends to increase with the testing scale. 

While several potential mechanisms have been identified, they found that this interesting 

scale dependence may be related to rock matrix heterogeneity in fractured rock. Based on 

the numerical experiments, Zhang et al. (2006) empirically determined a formula for 

estimating the effective Dm. However, their equation does not show dependence of the 

effective Dm on the spatial scales. 
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The work we present here focuses on the spatial-scale dependence of the effective 

Dm in multimodal heterogeneous rocks. We start from characterization of heterogeneous 

matrix properties to build the covariance function of ln(Dm). Then, we derive equations to 

describe the relationship between the effective Dm, the statistics of Dm measurements at 

laboratory scales, and the domain size. Monte Carlo simulations are performed to assess 

the accuracy of the derived effective Dm in a synthetic example.  

Spatial Statistics of Multimodal Dm 
  

Spatial covariance models developed from centimeter-scale measurements are 

important in upscaling effective parameters at larger scales (Gelhar, 1993). To 

characterize heterogeneous aquifer system, Lu and Zhang (2002) and Ritzi et al. (2004) 

presented a general form of multimodal correlation model of permeability. Here we apply 

it to modeling the covariance of ln(Dm). Heterogeneity of Dm comes from the variations 

of matrix physical and chemical properties within and across matrix units. Assuming a 

field-scale model made up of N matrix units in mutually exclusive occurrences (see 

Figure 1, N = 3), the distribution of matrix properties can be characterized by an indicator 

random variable , ( )kI x

1,   if unit  occurs at location 
( )

0,  otherwise.k

k
I

⎧
= ⎨

⎩

x
x                                          (1) 

Then, the ln(Dm), denoted as , can be expressed as ( )Y x
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where (x) represents ln(Dm) within unit k.  If the volume fraction of unit k is denoted 

as , the expected value of is equal to  (k = 1, 2, …, N). The composite mean  

and variance  of  can be expressed as (see Ritzi et al., 2004)  
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where km and 2
kσ denote the mean and variance of ( )kY x , respectively. 

Using indicator variables, we apply the transition probability for measuring 

spatial continuity of facies distributions (Carle and Fogg, 1997; Ritzi, 2000). The 

transition probability in ϕ  direction, ( )kit ϕh , is defined by   

{ } { }( ) Pr ( ) 1  and ( ) 1 / Pr ( ) 1ki i k kt I I Iϕ ϕ= + = = =h x h x x ,                         (4) 

where ϕh  is the lag distance in ϕ  direction. Similar to the permeability covariance 

defined in Ritzi et al. (2004), the composite covariance ( )YC ϕh  of ( )Y x  can be 

represented in the term of proportion, transition probability, and the in-unit or cross-unit 

covariance of ( )kY x  as 

2

1 1
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N N

Y ki k i k ki y
k i

C C m m p t Mϕ ϕ ϕ
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By assuming that the cross-covariances are negligible, i.e., ( ) 0kiC ϕ =h  for k i≠ (Rubin, 

1995; Dai et al., 2004), we can write the covariance of multimodal ( )Y x  in the following 

form: 

2
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As derived by Ritzi (2000) and Dai et al. (2005), we use exponential functions for 

transition probability and auto-covariance ( )kkC ϕh , 

/( ) ( ) I
ki i ki it p p e ϕ λ

ϕ δ −= + − hh     ( 1,k,i N= ),                                          (7) 

/2( ) k
kk kC e ϕ λ

ϕ σ −= hh     ( 1,k N= ),                                                           (8) 

where kiδ is the Kronecker delta, Iλ  is the correlation length of the indicator variable in 

ϕ  direction, and kλ is the integral scale of ( )kY x , which is a measure of spatial correlation 

of ( )kY x , roughly the distance beyond which an attribute is considered to be 

uncorrelated. Substituting (7) and (8) into (6), we obtain the composite covariance 

function as 

2 2 2 2
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k I
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where /( )k I k Iψλ λ λ λ λ= + . This covariance function will be used to upscale the Dm from the 

laboratory scale to the field scale. 

Effective Dm of Multimodal Matrix 
 

Tang et al. (1981) and Reimus et al. (2003) utilized analytical or semi-analytical 

solutions to model solute transport in fractured rocks, and both of them derived equation 

to represent the mass transfer rate between fracture and matrix material (see (10)). For 

heterogeneous matrix material, the effective mass transfer coefficient (CMT) at the field 

scale can be computed based on effective Dm, effective matrix porosity (φ ) and effective 

fracture aperture (b ) as: 

m
MT

D
C

b
φ

= .                                                                      (10) 

Taking the small-scale mass transfer coefficient as a spatial random variable, the 

effective field-scale mass transfer coefficient can be expressed as the volume averaging 
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of small-scale mass transfer coefficients. By assuming that ( )Y x is second-order 

stationary, and substituting the small-scale matrix porosity and the half aperture of the 

fracture with their effective valuesφ  and b , respectively, we have  

1 ( )
2

Y

MT L
C e dx

bL
φ

= ∫
x

,                                                              (11) 

where L is the length of the one-dimensional domain and  x is the spatial coordinate. By 

comparing (11) and (10), we obtain 

21 ( )
21 Y

m L
D e dx

L
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∫
x

.                                                         (12) 

Decomposing ( )Y x as the mean YM and zero-mean perturbation ( )Y x′ , ( ) ( )YY x M Y x′= + , 

we rewrite (12) as a double integral in the one-dimensional domain, 
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2
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where YMG
mD e= is the geometric mean of laboratory-scale Dm and y is also a one-

dimensional spatial variable. By using Taylor expansion and assuming the variance of 

( )Y x  smaller than unity, (13) becomes, 

2 2
2

1 1 1(1 ( ( ) ( )) ( ( ) ( ) 2 ( ) ( )))
2 8

G
m m L L

D D Y Y Y Y Y Y d d
L
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If we take the expectation of (14) to quantify the effective Dm, then 
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2

2
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where, ( , ) ( ) ( )YC x y Y x Y y′ ′= is the covariance that can be substituted using (9) with 

x yϕ = −h , so that ϕ is in the same direction as that of the one-dimesional variable  x 

and y. Then, we have the effective Dm as 
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     (16) 

In (16), the effective Dm increases with the variance. If the matrix is 

homogeneous, the variance is 0 and the effective Dm is equal to the geometric mean, 

which indicates that the heterogeneity of matrix properties is the source of the scale 

dependence of Dm.  

To further investigate the scale dependence of Dm, we set up a synthetic field-

scale heterogeneous matrix system with three units (Table 1 and Figure 1). Using (16) 

and the data listed in Table 1, we plot the effective Dm vs. the integral scale of unit 1 (U1) 

in Figure 2, which shows that the effective Dm increases with the increasing integral 

scales. Additional numerical experiments also show that the effective Dm is positively 

correlated to the integral scales of units 2 and 3, and the indicator correlation length. 

Table 1. The mean and variance of ( )kY x , proportions, and integral scales of the units 

Units k pk mk 
G
mkD  (m2/s) 2

kσ  Iλ (m) kλ (m) ψλ (m) 

U1 1 0.64 -21.55 4.4 1010−⋅  0.58 5 4.86 2.46 
U2 2 0.14 -20.62 1.1 910−⋅  0.45 5 3.58 2.09 
U3 3 0.22 -20.26 1.5 910−⋅  0.65 5 4.27 2.30 

 
 
Effective Dm of Bimodal and Unimodal Matrix 
 

In (16), if N = 2, ( )Y x follows a bimodal distribution and the expression of the 

effective Dm becomes, 
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If N = 1, ( )Y x  follows a unimodal distribution, (16) can be simplified as, 

2 2

2

21 1 ( 1 )
4
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G Y

m m
LD D e

L
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λ
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.                                        (18) 

Furthermore, if / 0Lλ → , which means the field is not correlated or ( )Y x are totally 

randomly distributed, (18) is approximated as: 

  
2

1
4

G Y
m mD D σ⎛ ⎞

≈ +⎜ ⎟
⎝ ⎠

,                                                     (19) 

which is a first-order approximation of Equation (10) in Zhang et al. (2006). On the other 

hand, if / Lλ  is sufficiently large, (18) is approximated as: 

  
2

1
2

G Y
m mD D σ⎛ ⎞

≈ +⎜ ⎟
⎝ ⎠

.                                                     (20) 

Assuming that in (18) the mean of unimodal ( )Y x  is -22.6 ln(m2/s), the variance 

is 0.88, and the domain size is 1000 m, we plot effective Dm as a function of the integral 

scale in Figure 3A. The effective Dm increases with the integral scale. For comparison, 

the effective Dm computed with (19) and (20), which correspond with the cases that 

0λ → and λ  is sufficiently large, are also illustrated in Figure 3A. When 0λ → , the 

effective Dm is 1.86 1010−⋅ m2/s and is greater than the geometric mean (1.53 1010−⋅ m2/s). 

When λ = 300 m, it is 2.01 1010−⋅ m2/s, and when λ  is sufficiently large, it is 

2.21 1010−⋅ m2/s. Figure 3B shows that when the ratio /L λ  increases, the effective Dm 

decreases.  
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Monte Carlo Simulations 

To assess the accuracy of the effective Dm, we conducted Monte Carlo 

simulations for conservative tracer transport in unimodal fractured rocks with the 

generalized double porosity model (GDPM, Zyvoloski et al., 2003). The GDPM 

numerical model has a length of 1000 m, a fracture spacing of 2 m, and a half aperture of 

0.01 m. The model has 1001 fracture nodes (constant spatial space xΔ =1 m) and 10010 

matrix nodes (each fracture node connects to 10 matrix nodes perpendicular to the flow 

direction with variable spatial spaces from 0.01 to 0.4 m). At the first fracture node (point 

A in Figure 1), the water injection rate is constant at 0.0116 kg/s. In the injection water, 

the solute concentration is normalized to 1.  For the purpose of this demonstration, the 

only spatial random variable in the simulations is Dm. 

The heterogeneous fields of unimodal ( )Y x were generated with a Gaussian 

random field generator (Zhang and Lu, 2004). We generated 1000 realizations with a 

mean ( )Y x of -22.6 ln(m2/s), variance of 0.88, and integral scale of 300 m. The quality of 

the generated ( )Y x fields was checked by comparing the covariance calculated from the 

generated realizations with the analytical, exponential covariance model. The comparison 

shows that the realizations match the specified mean, variance, and integral scale. Then, 

the generated ( )Y x are converted to Dm for GDPM models. 

 During the Monte Carlo simulations, we compute the mean, variance, and the 

95% confidence interval of the concentration breakthrough at the last fracture node (point 

B in Figure 1) after each simulation, and check the evolution of concentration variance 

and mean with the number of simulations until the solution of Monte Carlo simulations 

converges.  Figure 4 shows that the concentration breakthrough simulated with the 
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effective Dm computed by (18) matches well to the mean concentration after 1000 Monte 

Carlo simulations, while with the geometric mean of Dm the concentration is 

overestimated. This result indicates that the derived effective Dm is an accurate estimate 

of Dm for the field-scale modeling.  

Discussion and Conclusion 

The heterogeneity of matrix properties is the source of the scale dependence of 

Dm, which comes from the variations of matrix physical and chemical properties within 

and across matrix units. The covariance of ( )Y x  can be used to characterize the matrix 

heterogeneity with transition probability of the multimodal matrix units and the 

covariance of ( )Y x  within each unit. The major factors affecting Dm heterogeneity 

include matrix porosity, torturosity, solute pH value and temperature. In this paper we 

take Dm as a lumped spatial random variable to incorporate the variation of all these 

factors and upscale Dm from the laboratory scale to the field scale.  

The effective Dm is dependent on the geometric mean, variance, integral scale, 

and domain size. Its value increases with the integral scale and is greater than the 

geometric mean. Monte Carlo simulations with 1000 realizations of heterogeneous matrix 

diffusion fields demonstrate that the derived effective Dm is an accurate estimation of Dm 

for the field-scale transport modeling in the fractured rocks. The effective Dm is derived 

under the condition that the variance is smaller than unity. However, the first-order 

perturbation might give accurate estimates of effective Dm for variance as large as 4, as 

discussed by Rubin (1995) and Dai et al. (2004) for deriving macrodispersion equations. 

Further work is needed to identify the maximum variance that is accepted for the first-

order perturbation method.  
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Figure 1. Heterogeneous matrix with three units created with TPROG (Carle and Fogg, 
1997) by using the data listed in Table 1 (U1= blue, U2 = yellow and U3 = red). The 
fracture half aperture is 0.01 m and the fracture spacing is 2m. 
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Figure 2. Effective Dm are increased with the integral scales of U1 
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Figure 3. Effective Dm vs. the unimodal integral scales (A) and vs. the ratio of domain 
size and integral scale (B)  
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Figure 4. Computed concentration breakthroughs from the effective Dm, geometric mean 
and Monte Carlo simulations, as well as the concentration bounds of the 95% confidence 
intervals 
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